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Abstract—A theoretical method is presented for the evaluation of the transient behavior of free

convection loops. The method is applied to a loop consisting of two vertical branches with a point heat

source and sink. The system is represented by a one dimensional model, with the only space coordinate

running along the loop. Integral forms of the momentum and energy equations are derived and solved to yield

the flow rate and temperatures as functions of the time. It is found that this approximate method cannot
reconstruct the stability characteristics of the exact steady state solution.

NOMENCLATURE
A, area of cross section;
c, specific heat;
g, acceleration of gravity;
h, heat-transfer coefficient per unit of length;
H, penetration height;
K, defined by h/p,.ccA;
L, length;
0, volumetric flow rate;
S, coordinate along the loop;
T, temperature;
t, time;
t*,  time interval for first stage.

Greek symbols

o, dimensionless parameter, equation (3);
B, thermal expansion coefficient ;
& dimensionless parameter, equation (3);
21,45, quantity defined in equation (13c);
g, stability parameter, equation (A.4);
Prer»  Teference density.
Subscripts
0, location s = 0;
1, locations = 1;
i, initial value;
m, mean value.
Superscripts

, steady state;
R deviation from steady state;
" stability quantity, equation (A.4).

1. INTRODUCTION
MosT of the existing studies on natural circulation
loops are concerned with stability of steady-state

motion. Keller [1] and Welander [2] investigated
analytically a point heat source, point heat sink loop
with two vertical branches. They presented an
explanation for instabilities occuring in some
laminar flow situations by considering the phase shift
between the flow rate and buoyancy forces. Crevel-
ing et al. [3] treated a toroidal loop and found,
experimentally and theoretically, instabilities in the
transition zone between the laminar and the turbu-
lent flow regimes. Zvirin et al. [4,5] studied the
stability characteristics of the thermosyphonic solar
water heater and showed that this system can
become unstable at high energy utilizations.

Ong [6] suggested a numerical method for the
evaluation of the transient behavior of the solar
water heater. His solution, however, is based on
some approximations which are not generally valid,
e.g. negligible inertia of the fluid, linear temperature
distributions and uniform mean temperatures in all
system components.

This work presents a method for the study of
transient phenomena in a free convection loop. The
system considered is comprised of two vertical
branches with a point heat source and sink (cf. Fig.
1). Following the earlier studies some basic assum-
ptions are made. The model is one dimensional with
the space coordinate s being taken along the
circulation loop. The Boussinesq approximation is
used, whereby the density p is taken to be constant
in the governing continuity, momentum and energy
equations except in the body force term, where p
= Pl 1—B(T—T,¢}]. All the fluid properties and
heat-transfer coefficients are assumed to be constant.
With these assumptions the flow rate Q is uniform
along the loop at any time ¢. The analysis is for
laminar flow, where the friction force depends
linearly on the flow rate.
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FiG. |. The loop of two vertical branches, a point heat
source and a point heat sink.

To determine the transient behavior of the system,

1 188} TN Ye ! =
integral forms of the momentum and energy equa-

tions have been derived. The governing equations
are thus reduced to coupled ordinary non-linear
differential equations in time. Linear temperature
distributions are assumed and the equations are then
solved numerically. As expected, the results for large
times tend asymptotically to the steady state values
reported by Welander [2]. However, the solution
obtained here for the transient behavior does not
indicate any instability, even for the range of
parameters where the steady state motion was found
by Welander [2] to be unstable. It is noted that
stability strongly depends on the shape of the
temperature distribution. Thus, while the linear
temperature distributions can describe the steady
state motion as established by Zvirin et al. [4], such
distributions cannot account for the instabilities in
the loop considered here.

2. ANALYSIS

The loop considered here is shown in Fig. 1.
Welander [2] studied the steady motion and stability
of this loop. The point heat source and sink are
represented by constant wall temperatures AT and
— AT that act over small portions of the loop (As) at
the bottom and top (respectively). Following Welander
[2], the limiting case As— 0 is considered with
an overall infinite heat-transfer coefficient per unit
lengtht there, h — oo, such that the heat flux remains
finite (point source and point sink). Note that the
system is antisymmetric so that only one branch has
to be considered.

We write the governing equations in the following
non-dimensional form, cf. Welander [2]:

d 1

(T?HQ:“L Tds (M)
3 )
£I+Qf;z=0 0<s<l, 2
ot s

tNote that the overall heat-transfer coefficient multiplied
by the perimeter is denoted by h.

where the dimensionless parameters ¢ and « are
defined by:
gBATL RL .
= — & = . {31
2(KAs)*’ 2KAs
In these dimensionless equations, length is scaled by
L/2, time by L/2KAs, flow rate by KAAs and
temperature by AT. R is a frictional coefficient such
that p,LRQ is the total friction force and K
= h/p.sCcA, where c is the specific heat of the fluid
and A is the cross-sectional area. The boundary
conditions for the temperature are obtained from a
balance on the heat source or sink:

T+ Ty =(1+T)(1—e 2 for >0 (4a)

To+T,=(—1+T)(1—e 1) for Q<0 (4b)

where the subscripts 0 and 1 denote temperatures at
s = 0,1 (respectively). The solution of equations (1)
and (2) requires initial values for T and Q. We
consider the case where the heat source and sink are
applied initially to a stationary loop of uniform
temperature T = 0. Since there exists no flow at ¢
= 0, the fluid at the source is heated such that its
temperature equals that of the wall. The initial
conditions are, therefore:

0=0,T,=1,T(s)=0 O<s<l. (5)

It is noted that due to symmetry, a metastable
state can exist with no flow, hot fluid at the bottom
and cold fluid at the top. The onset of the flow is
therefore involved with an instability. However, the
analysis of this initiation of the flow is beyond the
scope of the present study and we assume that the
flow starts immediately due to some small non-
symmetry.

The solution is separated into two stages as shown
in Fig. 2. During the first stage a linear temperature
distribution is taken from the bottom (s =0) to a
penetration height H(t), and T =0 for H <5 < 1.
The penetration height increases with time until H
= l at t = r* and the second stage then begins. For ¢
> t* a linear temperature distribution is assumed
over the whole range 0 < s < 1.

H(t)

a\ e

A \_
1T F 1T
stage I stage I
o<t<t® t>t*

Fi1G. 2. The model for variation of the temperature
distribution with time.
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For the first stage, integration of the energy
equation (2) yields:

d H
—J Tds—QT, =0 0<it<1t* (6)
dr Jo

where the condition Ty = 0 was used. For a linear
temperature distribution equation (6) reduces to:

1d
EE(HTO)=QTO 0<t<rt¥, (7)
and the momentum equation (1) becomes
d
E?—+8Q = 1aTyH, 8)

while the condition (4a) takes the form:
Th=1-¢1 O<t<t* 9)

(Q is taken to be positive). Equations (7)-(9)
constitute a set of three coupled ordinary differential
equations for the three variables H, T, and Q. The
initial conditions are:

Q=0 T,=1, H=H,at t=0, (10

where H; is a small value representing the initial
non-symmetry of the heat source. The set (7)-(9) can
be reduced to the following single equation by
differentiating equation (8) with respect to time and
introducing equations (7) and (9):

d?@ dQ _
d7+8d—t=aQ(l—C 1/Q) O<t<t* (11)
with the initial conditions:
d
Q=0,—Q=%cxH,~ at t=0. (12)
de
The last condition results from (8) and (10).

Equation (11) is non-linear and generally must be
solved numerically. However, for small values of a/e,

an analytical solution can be obtained. For this case
at steady state the flow rate is small (of order «/c)
and the temperature T along the right branch is 1.
During the first stage Q is even smaller and the RHS
of equation (11) reduces to Q. The solution is then
given by:

g i
(2 +do) 2
x [(A; +6)e" — (1, +)e]  (13b)
with
Aia= —&2F (8 +4a)'/% (13¢c)

It is seen that the solution, and hence also the time ¢
= t* when H reaches the top (H = 1), depends on
the initial value H;. The whole solution tends to zero
as H; - 0.

The first stage terminates at ¢ = t* when H = |
and the second stage then begins. The integral of the
energy equation (2), is:.

d 1
~J Tds+Q(T,—Ty) =0 t>* (14)
de Jo

The integral {, Tds equals T,, = (T, + T;)/2. Making
use of condition (4a), the temperatures T, and T, are
expressed in terms of T, as follows:

2T, e 10 2T,

To=1-1"g =1 Tig =1 (19

and equation (14) then takes the form:

-1/Q
ﬂ:zQ[l—mT} t> % (16)

1—et@ "

dt

—
16

F1G. 3. Flow rate as a function of time for various system parameters « and &.
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FiG. 4. Temperatures at the bottom and top of the loop
as functions of time for various system parameters x and .

The momentum equation (1) is now written as:

d
a9 = —eQ+aT,

t > t*
dt

(17)

Equations (16) and (17) constitute a set of two non-
linear coupled ordinary differential equations for the
two variables T, and Q. The initial conditions are:

20

It is also noted that for this stage there exists no
analytical solution even for the special case of small
afe.

3. RESULTS AND DISCUSSION

The solution procedure is the following: (11) with
the initial conditions (12) for stage 1 is solved
numerically for Q(¢). The maximal temperature Ty(t)
is then determined from (9) and the height H(z) from
(8). Note that dQ/dr is available for every time step
as a part of the numerical solution. This solution
continues until H = 1. At this time, t = t* stage 1l
begins and the behavior of the system is then
obtained from a numerical integration of (16) and
(17) subject to the conditions (18). This solution
yields Q(t) and T,(t), and (15) are then used to
compute T, and 7. The calculation continues until
steady state is reached.

In the present study the Runge—Kutta method was
used. Two initial values of H; were chosen, 0.05 and
0.01, along with various values of o and ¢ which
were also studied by Welander [2]. The results for
Q(t) are shown in Fig. 3, T,(t) and T,(t) are
presented in Fig. 4 and H(t) in Fig. 5. All the correct
steady state values are reached asymptotically at
rates depending on a, ¢ and H,. It is seen that all the

0 = Quaget, T, = 3T, at t = t*. (18)  curves are smooth and do not show any instabilities.
a | e ale
Hi=0-0l ®os| 02 G203
— — H{=0-05 @2 1 @a0 | 8

@@ I@

10-0

FIG. 5. The growth of the “heated region” of the loop vs time for various system parameters o and ¢.



Transient behavior of natural circulation loops 503

According to Welander [2] the steady state of
o =20, e = 3 is close to neutral oscillation and that of
o = 40, ¢ = 6 is unstable. For these cases he obtained
strong oscillations on the basis of a finite difference
numerical solution of the original partial differential
equations. In the present procedure, only very small
oscillations appeared at steady state and these are
not discernible in Figs. 3 and 4.

It is emphasized that the approximate equations
(15)-(17) yield the exact steady state solution; the
temperature is uniform (in both branches) given by:

1—e 1@

where the steady state flow rate Q is obtained from
the solution of the algebraic equation:
o

0="7= al—e 1

¢ Teire e 29

Hence the steady state solution depends on a single
parameter o/e. However, the stability characteristics
are strongly affected by the shape of the temperature
distribution. As shown in the Appendix, the approxi-
mate equations (16) and (17) lead to stable steady
state solutions even for the range of parameters that
was found to be unstable by Welander [2].
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APPENDIX

Stability characteristics

Welander [2] indicated that there exists a range of
parameters for which the steady state motion in the loop
(Fig. 1) s unstable. It will be shown here that the
approximate equations (16), (17) representing the behavior
of the loop do not lead to any instabilities. These equations
yield a good approximation for the transient behavior and
the exact steady state solution—(19), (20). However, the
stability strongly depends on the shape of the temperature
distribution and the assumption of a linear profile is not
justified for a stability analysis of this loop.

Let us consider small deviations from the steady state in
the form:

Q)= 0+0Q'(); T,()=T,+T,) (A1)

where T, and Q are given by (19), (20). Introducing (A1)
into (16), (17), subtracting the steady state relations and
making use of the linearized stability procedure, the
following perturbation equations are obtained:

d7, _[mQ’
(1—m)—" = =20 = (1+T)+(1+m)T, | (A2)
dt 0
o' = "+l (A3)
dl - SQ o m
where m = ¢~ The disturbances are taken as:
Q' =0e", T,=T,e" (A4)

which, when introduced into (A2),(A3) yield:
R _[md .
(1-m)oT, = —ZQ{?(HTM)HI +m)Tm] (A5)

6Q = —s0+aT,. (A6)

Eliminating Q0 and T, from the last two relations, the
characteristic equation for o is obtained:

, 20 0 2

crols+2)+2 24 2 0 @an
T, T, (1-m)

Since the coefficients in this quadratic equation are always

positive, there are no roots for ¢ with positive real parts
and hence no unstable solutions.

COMPORTEMENT TRANSITOIRE DE BOUCLES A
CIRCULATION NATURELLE: DEUX BRANCHES VERTICALES
AVEC UNE SOURCE THERMIQUE ET UN PUIT PONCTUELS

Reésume - On présente une méthode théorique pour I'évaluation du comportement transitoire de boucles

a convection naturelle. La méthode est appliquée & une boucle a deux branches avec une source et un

puit de chaleur ponctuels. Le systéme est représenté par un modéle a une dimension, avec une seule

coordonnée spatiale le long de la boucle. Les formes intégrales des équations de quantité de mouvement

et d'énergie sont résolues pour obtenir le débit et les températures en fonction du temps. On trouve que

cette méthode approchée ne peut reconstruire les caractéristiques de stabilité de la solution exacte en
régime permanent.

INSTATIONARES VERHALTEN EINES THERMOSYPHON-KREISLAUFS:
ZWEI VERTIKALE ZWEIGE MIT PUNKTFORMIGER WARMEQUELLE UND -SENKE

Zusammenfassung — Es wird eine theoretische Methode zur Beschreibung des instationdren Verhaltens
eines Kreislaufs mit freier Konvektion angegeben. Die Methode wird auf einen Kreislauf, bestehend aus
zwei vertikalen Strecken mit einer punktférmigen Wirmequelle und -senke angewendet. Das System wird
durch ein eindimensionales Modell beschrieben, wobei die ecinzige Raumkoordinate entlang des
Kreislaufs verlduft. Durch Ableiten und Losen der Momenten- und Energiegleichungen in integraler
Form erhilt man den Durchsatz und die Temperatur als Funktionen der Zeit.

Ee zeigte sich, daB diese Ndherungsmethode die Stabilitdtskennwerte der exakten stationdren Losung

nicht wiedergeben kann.
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HEYCTAHOBUBIIHUHACS PEXXWM PABOTBHI ECTECTBEHHBIX LIAPKYJIALMOHHBIX
KOHTYPOB: [IBA BEPTHUKAJIbHbIX MATPYBEKA C TOYEYHBIMH UCTOYHHKAMH
N CTOKAMH TEIIA

Aunnorams — [peasioxes TEOPETHUECKHH METO/ OLIEHKM HEYCTAHOBMBLUETOCA PeXHMA paboThI KOH-
TypoB €O CBOOOMHOM KOHBEKIHeH. MeToa NpUMEHHUM K KOHTYpPY, COCTOAILEMY K3 [BYX BEPTHKAJbHBIX
naTpyOKOB € TOYEYHBLIMH HMCTOYHHKAMHM H CTOKaMHM Temna. CHcTeMa INpEJICTaBICHa OJHOMEDPHOR
MOZE/IbIO ¢ EAMHCTBEHHON NPOCTPAHCTBEHHOH KOODAMHATOM, HAIPABIEHHOW BROJL KOHTypa. [lns
NOJIy4eHUs BPEMEHHOM 3aBHCHMOCTH CKOPDOCTH M TEMNEPATypbl IMOTOKA BhIBEJEHbI H PELUEHHI
HHTErpaJibHbie YPABHEHHs KOJMYECTBa ABHXKCHHA M 3Hepruu. HaitieHo, 4TO ¢ NOMOILbBIO NPEAIOXKEH-
HOTO NPHOIMKEHHOTO METONA Helb3s NMOJYYHTL XapaKTePHCTHKH YCTOHYHBOCTH TOYHOTO CTALMOHAD-
HOTO peLICHHS.



