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Abstract-A theoretical method is presented for the evaluation of the transient behavior of free 
convection loops. The method is applied to a loop consisting of two vertical branches with a point heat 
source and sink. The system is represented by a one dimensional model, with the only space coordinate 
running along the loop. Integral forms ofthe momentum and energy equations are derived and solved to yield 
the flow rate and temperatures as functions of the time. It is found that this approximate method cannot 

reconstruct the stability characteristics of the exact steady state solution. 

NOMENCLATURE 

A, area of cross section ; 
c, specific heat ; 

9, acceleration of gravity ; 
h, heat-transfer coefficient per unit of length; 

H, penetration height ; 
K, defined by h/p,,,cA; 

L length ; 
Qv volumetric flow rate ; 
s, coordinate along the loop; 

T, temperature ; 
t, time; 
t*, time interval for first stage. 

Greek symbols 

a, dimensionless parameter, equation (3); 

P? thermal expansion coefficient ; 
6, dimensionless parameter, equation (3); 

A,,&, quantity defined in equation (13~); 
0, stability parameter, equation (A.4); 

Prei9 reference density. 

Subscripts 

0, location s = 0; 

1, location s = 1; 

I, initial value ; 
m, mean value. 

Superscripts 

steady state; 
deviation from steady state; 

* 
stability quantity, equation (A.4). 

I. INTRODUCTION 

MOST of the existing studies on natural circulation 
loops are concerned with stability of steady-state 

motion. Keller [l] and Welander [2] investigated 

analytically a point heat source, point heat sink loop 

with two vertical branches. They presented an 
explanation for instabilities occuring in some 
laminar flow situations by considering the phase shift 

between the flow rate and buoyancy forces. Crevel- 

ing et al. [3] treated a toroidal loop and found, 
experimentally and theoretically, instabilities in the 

transition zone between the laminar and the turbu- 

lent flow regimes. Zvirin et al. [4,5] studied the 

stability characteristics of the thermosyphonic solar 

water heater and showed that this system can 
become unstable at high energy utilizations. 

Ong [6] suggested a numerical method for the 

evaluation of the transient behavior of the solar 

water heater. His solution, however, is based on 
some approximations which are not generally valid, 

e.g. negligible inertia of the fluid, linear temperature 

distributions and uniform mean temperatures in all 

system components. 
This work presents a method for the study of 

transient phenomena in a free convection loop. The 

system considered is comprised of two vertical 
branches with a point heat source and sink (cf. Fig. 
1). Following the earlier studies some basic assum- 
ptions are made. The model is one dimensional with 
the space coordinate s being taken along the 
circulation loop. The Boussinesq approximation is 

used, whereby the density p is taken to be constant 
in the governing continuity, momentum and energy 
equations except in the body force term, where p 
= pref[ 1 -/l(T- T,,,)]. All the fluid properties and 
heat-transfer coefficients are assumed to be constant. 
With these assumptions the flow rate Q is uniform 
along the loop at any time t. The analysis is for 
laminar flow, where the friction force depends 
linearly on the flow rate. 
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FIG. I. The loop of two vertical branches, a point heat 

source and a point heat sink. 

To determine the transient behavior of the system, 
integral forms of the momentum and energy equa- 

tions have been derived. The governing equations 

are thus reduced to coupled ordinary non-linear 
differential equations in time. Linear temperature 
distributions are assumed and the equations are then 

solved numerically. As expected, the results for large 

times tend asymptotically to the steady state values 
reported by Welander [2]. However, the solution 

obtained here for the transient behavior does not 

indicate any instability, even for the range of 

parameters where the steady state motion was found 

by Welander [2] to be unstable. It is noted that 
stability strongly depends on the shape of the 
temperature distribution. Thus, while the linear 

temperature distributions can describe the steady 

state motion as established by Zvirin et al. [4], such 
distributions cannot account for the instabilities in 

the loop considered here. 

2. ANALYSIS 

The loop considered here is shown in Fig. 1. 

Welander [2] studied the steady motion and stability 
of this loop. The point heat source and sink are 

represented by constant wall temperatures AT and 
-AT that act over small portions of the loop (As) at 

the bottom and top (respectively). Following Welander 
[2], the limiting case As -+ 0 is considered with 

an overall infinite heat-transfer coefficient per unit 

length? there, h + CC, such that the heat flux remains 
finite (point source and point sink). Note that the 
system is antisymmetric so that only one branch has 
to be considered. 

We write the governing equations in the following 
non-dimensional form, cf. Welander [2] : 

dQ s I 

-+EQ=x 
dt 

T ds (1) 
0 

tNote that the overall heat-transfer coefficient multiplied 
by the perimeter is denoted by h. 

where the dimensionless parameters E and x are 
defined by: 

&ATL RL 

u=m. &=2KBs. 
(3 

In these dimensionless equations, length is scaled by 
L/2, time by L/2KAs, flow rate by KAAs and 
temperature by AT. R is a frictional coefficient such 

that prerLRQ is the total friction force and K 

= h/p,,,cA, where c is the specific heat of the fluid 
and A is the cross-sectional area. The boundary 
conditions for the temperature are obtained from a 

balance on the heat source or sink : 

T,sT,=(~+T,)(~-~~‘~~) for Q>O (4a) 

T,+-T,=(-l+T,)(l-e~l’Q) for Q<O (4b) 

where the subscripts 0 and 1 denote temperatures at 
s = 0,l (respectively). The solution of equations (1) 
and (2) requires initial values for T and Q. We 

consider the case where the heat source and sink are 

applied initially to a stationary loop of uniform 

temperature T = 0. Since there exists no flow at r 

= 0, the fluid at the source is heated such that its 
temperature equals that of the wall. The initial 
conditions are, therefore: 

Q=O, To= I, T(s)=0 O<s<l. (5) 

It is noted that due to symmetry, a metastable 
state can exist with no flow, hot fluid at the bottom 
and cold fluid at the top. The onset of the flow is 

therefore involved with an instability. However, the 
analysis of this initiation of the flow is beyond the 

scope of the present study and we assume that the 
flow starts immediately due to some small non- 

symmetry. 
The solution is separated into two stages as shown 

in Fig. 2. During the first stage a linear temperature 

distribution is taken from the bottom (s = 0) to a 

penetration height H(r), and T = 0 for H < s < 1. 

The penetration height increases with time until H 

= 1 at t = t* and the second stage then begins. For t 
> t* a linear temperature distribution is assumed 
over the whole range 0 < s < 1 

1) 

stage I 

o<t<t’ 

stage II 

l>l* 

FIG. 2. The model for variation of the temperature 
distribution with time. 
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For the first stage, integration of the energy 
equation (2) yields: 

d H 

dt, s 
Tds-QT, = 0 0 < t < t*, (6) 

where the condition TH = 0 was used. For a linear 
temperature distribution equation (6) reduces to: 

;&VW = QT, 0 < t < t*, (7) 

and the momentum equation (1) becomes 

dQ 
z+~~ = &T,H, 

while the condition (4a) takes the form: 

T, = 1 -e-‘/Q o<t<t* (9) 

(Q is taken to be positive). Equations (7)-(9) 
constitute a set of three coupled ordinary differential 
equations for the three variables H, To and Q. The 
initial conditions are: 

Q=O, T,=l, H=Hi at t=O, (10) 

where Hi is a small value representing the initial 
non-symmetry of the heat source. The set (7)-(9) can 
be reduced to the following single equation by 
differentiating equation (8) with respect to time and 
introducing equations (7) and (9): 

d2Q dQ dt2+~dt = aQ(l-e-“Q) 0 < t < t* (11) 

with the initial conditions: 

dQ Q = 0, dt = gaHi at t = 0. (12) 

The last condition results from (8) and (10). 
Equation (11) is non-linear and generally must be 
solved numerically. However, for small values of a/c, 

I6- 

- H,=o~ol 

-- Hi=0.05 

an analytical solution can be obtained. For this case 
at steady state the flow rate is small (of order a/E) 
and the temperature T along the right branch is 1. 
During the first stage Q is even smaller and the RHS 
of equation (11) reduces to aQ. The solution is then 
given by: 

Q= 
?Hi 

2(E2 + 4a)“’ 
(,;.I, _ e”‘) 

(W 

H= 
@2 +H4a)1,2 

x [(A, +c)e”“- (i,+~)e”~‘] (13b) 

with 

A,,, = -&/2T (c2+4a)li2. (13c) 

It is seen that the solution, and hence also the time t 
= t* when H reaches the top (H = l), dep%nds on 
the initial value Hi. The whole solution tends to zero 
as Hi + 0. 

The first stage terminates at t = t* when H = 1 
and the second stage then begins. The integral of the 
energy equation (2), is:. 

d ’ 

z, s 
Tds+Q(T, -To) = 0 t > t*. (14) 

The integral j: Tds equals T, = (To + T,)/2. Making 
use of condition (4a), the temperatures To and TL are 
expressed in terms of T, as follows: 

T,=l-g, Tl=&-l (15) 

and equation (14) then takes the form: 

FIG. 3. Flow rate as a function of time for various system parameters a and E 
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FIG. 4. Temperatures at the bottom and top of the loop 
as functions of time for various system parameters E and E. 

The momentum equation (1) is now written as: 

dQ 
dt= -~QfctT, t > t*. (17) 

Equations (16) and (17) constitute a set of two non- 
linear coupled ordinary differential equations for the 

two variables T, and Q. The initial conditions are: 

Q = Qstage~, T, = fT, at t = t*. (18) 

It is also noted that for this stage there exists no 

analytical solution even for the special case of small 

Z/E. 

3. RESULTS AND DISCUSSION 

The solution procedure is the following: (11) with 

the initial conditions (12) for stage I is solved 

numerically for Q(t). The maximal temperature T,(t) 
is then determined from (9) and the height H(t) from 

(8). Note that dQ/dt is available for every time step 
as a part of the numerical solution. This solution 

continues until H = 1. At this time, t = t*, stage II 
begins and the behavior of the system is then 
obtained from a numerical integration of (16) and 

(17) subject to the conditions (18). This solution 
yields Q(t) and T,(t), and (15) are then used to 
compute To and Tl. The calculation continues until 

steady state is reached. 

In the present study the Runge-Kutta method was 

used. Two initial values of Hi were chosen, 0.05 and 

0.01, along with various values of tl and 8, which 

were also studied by Welander [2]. The results for 

Q(t) are shown in Fig. 3, T,(t) and T,(t) are 

presented in Fig. 4 and H(t) in Fig. 5. All the correct 
steady state values are reached asymptotically at 

rates depending on CC. E and Hi. It is seen that all the 
curves are smooth and do not show any instabilities. 

- H,=O.Ol 

- - H,=O 05 

FIG. 5. The growth of the “heated region” of the loop vs time for various system parameters a and c 
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According to Welander [2] the steady state of 

cr = 20, E = 3 is close to neutral oscillation and that of 

tl = 40, E = 6 is unstable. For these cases he obtained 

strong oscillations on the basis of a finite difference 

numerical solution of the original partial differential 
equations. In the present procedure, only very small 
oscillations appeared at steady state and these are 
not discernible in Figs. 3 and 4. 

It is emphasized that the approximate equations 
(15)-(17) yield the exact steady state solution : the 

temperature is uniform (in both branches) given by: 

T= l-e-“e 
mq O<s<l, (19) 

where the steady state flow rate e is obtained from 

the solution of the algebraic equation: 

Hence the steady state solution depends on a single 

parameter a/&. However, the stability characteristics 

are strongly affected by the shape of the temperature 
distribution. As shown in the Appendix, the approxi- 
mate equations (16) and (17) lead to stable steady 

state solutions even for the range of parameters that 
was found to be unstable by Welander [2]. 
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APPENDIX 

Stability characteristics 
Welander [2] indicated that there exists a range of 

parameters for which the steady state motion in the loop 
(Fig. 1) is unstable. It will be shown here that the 
approximate equations (16). (17) representing the behavior 
of the loop do not lead to any instabilities. These equations 
yield a good approximation for the transient behavior and 
the exact steady state solution-(191, (20). However, the 
stability strongly depends on the shape of the temperature 
distribution and the assumption of a linear profile is not 
justified for a stability analysis of this loop. 

Let us consider small deviations from the steady state in 
the form: 

Q(t) = Q+Q’(t,; T,(t) = T,+T;(t) (AU 

where ;i;, and Q are given by (19), (20). Introducing (Al) 
into (l6), (17), subtracting the steady state relations and 
making use of the linearized stability procedure, the 
following perturbation equations are obtained: 

(l-m):= -2+l+T~)+(l+m)T; 
I ' 1 

642) 

dQ' -= 
dt 

-&Q’+aT,: (A3) 

where m = e-“Q. The disturbances are taken as: 

Q’ = 0 &‘I, TA = Trn es’ (.44) 

which, when introduced inio (A2),(A3) yield: 

(l-m)aTm= -20 
[- 

!$(l+T,ifll+rn)T, 1 (.45) 

UQ = --E&+CIFm. (A61 

Eliminating & and Tm from the last two relations, the 
characteristic equation for r~ is obtained: 

d+++3+2~[$+&]=0. 647) 

Since the coefficients in this quadratic equation are always 
positive, there are no roots for r~ with positive real parts 
and hence no unstable solutions. 

COMPORTEMENT TRANSITOIRE DE BOUCLES A 
CIRCULATION NATURELLE: DEUX BRANCHES VERTICALES 
AVEC UNE SOURCE THERMIQUE ET UN PUIT PONCTUELS 

HPsumC On prisente une mCthode thkorique pour I’evaluation du comportement transitoire de boucles 
ti convection naturelle. La methode est appliqute j une boucle g deux branches avec une source et un 
puit de chaleur ponctuels. Le systeme est reprCsent6 par ut1 modkle i une dimension. avec une seule 
coordonnCe spatiale le long de la boucle. Les formes intigrales des iquations de quantiti de mouvement 
et d’tnergie sont rtsolues pour obtenir le d&bit et les temperatures en fonction du temps. On trouve que 
cette m&ode approchte ne peut reconstruire les caractiristiques de stabilitt de la solution exacte eu 

rtigime permanent. 

INSTATIONARES VERHALTEN EINES THERMOSYPHON-KREISLAUFS: 
ZWEI VERTIKALE ZWEIGE MIT PUNKTFORMIGER WARMEQUELLE UND -SENKE 

Zusammenfassung-Es wird eine theoretische Methode zur Beschreibung des instationlren Verhaltens 
eines Kreislaufs mit freier Konvektion angegeben. Die Methode wird auf einen Kreislauf, bestehend aus 
zwei vertikalen Strecken mit einer punktfiirmigen WBrmequelle und -senke angewendet. Das System wird 
durch ein eindimensionales Model1 beschrieben, wobei die einzige Raumkoordinate entlang des 
Kreislaufs verlsuft. Durch Ableiten und Ltisen der Momenten- und Energiegleichungen in integraler 
Form erhllt man den Durchsatz und die Temperatur als Funktionen der Zeit. 

Ee zeigte sich, daB diese Naherungsmethode die Stabilitsitskennwerte der exakten stationsiren LBsung 
nicht wiedergeben kann. 
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HEYCTAHOBMBIIIMi%3I PElKkiM PAEOTbI ECTECTBEHHbIX ~l4PKYJ’IRLWOHHbIX 
KOHTYPOB: LIBA BEFTMKAJIbHbIX rIATPY6KA C TOYEYHbIMM MCTOqHMKAMM 

M CTOKAMM TEl-IJIA 

A~~~~alpl~-nnpenno~e~ TeOpeTWeCKHii MeTOn OUeHKW HeyCTaHOBHBuIerOCR pemeMa pa6OTbI KOH- 

THROB Co CBO6OnHOit KOHBeKIlHek MeTon npRMeHaM K KOHTypy,COCTORIUeMy H3 LlByX BepTwKanbHblX 

IIaTpy6KOB C TO'FIHbIMH HCTO'iHHKaMA H CTOKaMki TeIlJla. CHCTCMa Il~JICTaBJleHLl OLlHOM'ZpHOii 

MOfle,,blO C enAHCTBeHHOfi IlpOCTpaHCTBeHHOii KOOpLlHHaTOti, HaIlpaBneHHOfi BAOJlb KOHTypa. &lff 

nO,Iy',eH,,K BpeMeHHOfi JIBWCWMOCTH CKOpOCTB H TeMnepaTypbI nOTOKa BbIBeneHbI H peUIeHb1 

BHTerpaJbHbIe ypaBHeHk,K KOJlWieCTBa ABWKeHRR W 3HepWH. HalneHo, 'IT0 C llOMOlUbH3 IlpCdUlO~eH- 

HO,-0 IIpEi6JIHxeHHOrO MeTOJla HeJIb ITOJIyWiTb XapaKTepHCTBKB yCTOti'iHBOCTll TO'IHOI-0 CTaWiOHap- 

HOrO pCUCHHSl. 


